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Introduction 
Interior ballistics calculations usually assume a rifle bullet will be fired 

through a barrel rifled at a standard twist-rate of about 40 calibers per turn, 

as with a 30-caliber barrel having a 12-inch twist for example. For some 

new applications we need to use barrels rifled at much faster twist-rates of 

about 20 calibers per turn where the spin-up inertia of the accelerating 

bullet might significantly augment the linear inertial resistance provided by 

the mass of the projectile. Riflemen know that inertial resistance is 

increased when selecting faster twist-rate barrels, but we have had no way 

to quantify the effects of that increase. We shall formulate this increased 

inertial resistance in terms of an increase in effective bullet mass so that we 

can then use conventional interior ballistics programs like QuickLOAD© to 

calculate realistic chamber pressure curves with these fast-twist barrels. 

We are not concerned here with possible mechanical issues affecting bullet 

integrity when weaker types of bullets are fired through fast-twist rifling.  

Analysis 
We will ignore bullet-to-bore friction in this formulation because it is difficult 

to quantify and because, whatever its effects, this friction is not primarily 

affected by our choice of rifling twist-rate in that barrel. We shall start our 

analysis just after the bullet has been engraved by the rifling lands in the 

throat of the barrel because very little rotation of the bullet is occurring 

during that brief high-stress mechanical process. Peak rotational 

acceleration of the bullet occurs along with peak linear acceleration at the 

time of peak base-pressure when the bullet has moved just a few inches 

into the bore.  

The instantaneous force F(t) driving the rifling engraved bullet down the 

barrel is given by the product of the instantaneous base-pressure P(t) 

behind the bullet and the cross-sectional area S of the bore: 

    F(t) = P(t)*S 
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Most of this driving force F(t) is matched by the inertial force FL(t) resisting 

the linear acceleration of the bullet down the bore. Neglecting friction, this 

linear inertial force FL is given by the product of the bullet’s mass m and its 

linear acceleration a according to Newton’s Second Law of Motion:  

    FL = m*a = m*d2x/dt2 

where   m = (Bullet Weight)/g 

and    g = 32.174 feet/second2. 

The position of the bullet along the axis of the bore is our x-axis here.  

Neglecting friction, the remainder of the driving force F – FL is matched by 

an instantaneous axial force FA spinning-up the bullet due to the rifling 

twist. This axial force FA is attributable to the second moment of angular 

inertia Ix of the bullet’s mass distribution about this same x-axis and the 

second time derivative d2ϴ/dt2 of the bullet’s angular orientation ϴ.  

If the caliber of the bore is d, we can define the twist-rate of the rifling as 

n*d where n is the number of calibers per turn of that rifling. Each full turn 

of the rifling pattern represents 2*π radians of angular motion in ϴ. The 

engraved bullet remains mechanically locked into the rifling as it moves, so 

that:  

    ϴ(t) = [2*π/(n*d)]*x(t) 

Since the twist-rate n and caliber d are taken as constants here,  

    d2ϴ/dt2 = (2π/nd)*d2x/dt2 

The second moment of inertia Ix of the mass distribution of the bullet about 

its x-axis can be expressed as: 

    Ix = m*k2  

where    m = Mass of the bullet 

and    k = Radius of Gyration of its mass distribution. 

The inertial resistance to spinning-up the bullet is a torque T such that, from 

the rotational form of Newton’s Second Law of Motion: 

    T = Ix*d2ϴ/dt2   

or    T = [m*k2]*[(2π/nd)*d2x/dt2]. 
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Now we need to relate this rotational resistance torque T about the x-axis 

of the bore to an equivalent linear resistance force FA acting along that 

axis, neglecting friction but taking into account the twist-rate of the rifling. 

Fortunately, we recognize this as being mechanically equivalent to the 

relationship between the tightening torque T of a threaded fastener and its 

resultant axial clamping force FA in the absence of friction. From 

mechanics, this relationship is:  

    FA = (2π/nd)*T 

where our twist-rate n*d takes the place of the thread pitch of the fastener.  

Substituting our expression for T above and rearranging, we have: 

    FA = (2π/n)2 *(k/d)2 * m*d2x/dt2  

Summing the two reaction forces, we now have the formulation: 

    F = FL + FA  

or   F = [1 +(2π/n)2 *(k/d)2] * m*d2x/dt2  

From the mass properties calculated for monolithic copper Ultra-Low-Drag 

bullets of my own design, we can estimate the likely ratio of k/d to be 

approximately 0.36 for any similar ULD or VLD rifle bullet.  

Results 
Let us examine the second term above in the square brackets, the 

fractional equivalent mass increase of the bullet when taking spin-up inertia 

into account. For a traditional rifling twist-rate of 40 calibers per turn, we 

calculate: 

(2π/40)2 *(0.36)2 = 0.00320 or 0.32 percent 

Since about this amount of standard spin-up inertia is already included in 

applicable interior ballistics programs such as QuickLOAD©, we should 

modify our formulation to compensate for that fact:  

   F = [0.99680 +(2π/n)2 *(k/d)2] * m*d2x/dt2  

Now, when we need to calculate the equivalent bullet mass (or weight) to 

enter into QuickLOAD for calculating the pressure effects with a fast twist 

barrel with n = 20 calibers per turn, for example, we simply multiply the 

bullet mass (or weight) by:  
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   0.99680 +(2π/20)2 *(0.36)2 = 1.00959 

Thus, for example, one could simply enter into QuickLOAD an effective 

bullet weight of 302.9 grains when firing a 300 grain bullet from a very 

fast-twist 20 calibers per turn rifle barrel. All QuickLOAD calculated 

outputs would then be corrected for the use of this very fast-twist barrel.  


