Re: How do you deal with torque from firing?
The technical term is moment of inertia. More weight further from the center line of the rifle resists rotational forces.
http://en.wikipedia.org/wiki/Moment_of_inertia
Overview
The moment of inertia of an object about a given axis describes how difficult it is to change its angular motion about that axis. Therefore, it encompasses not just how much mass the object has overall, but how far each bit of mass is from the axis. The farther out the object's mass is, the more rotational inertia the object has, and the more force is required to change its rotation rate. For example, consider two hoops, A and B, made of the same material and of equal mass. Hoop A is larger in diameter but thinner than B. It requires more effort to accelerate hoop A (change its angular velocity) because its mass is distributed farther from its axis of rotation: mass that is farther out from that axis must, for a given angular velocity, move more quickly than mass closer in. So in this case, hoop A has a larger moment of inertia than hoop B.
Divers reducing their moments of inertia to increase their rates of rotationThe moment of inertia of an object can change if its shape changes. Figure skaters who begin a spin with arms outstretched provide a striking example. By pulling in their arms, they reduce their moment of inertia, causing them to spin faster (by the conservation of angular momentum).
The moment of inertia has two forms, a scalar form, I, (used when the axis of rotation is specified) and a more general tensor form that does not require the axis of rotation to be specified. The scalar moment of inertia, I, (often called simply the "moment of inertia") allows a succinct analysis of many simple problems in rotational dynamics, such as objects rolling down inclines and the behavior of pulleys. For instance, while a block of any shape will slide down a frictionless decline at the same rate, rolling objects may descend at different rates, depending on their moments of inertia. A hoop will descend more slowly than a solid disk of equal mass and radius because more of its mass is located far from the axis of rotation. However, for (more complicated) problems in which the axis of rotation can change, the scalar treatment is inadequate, and the tensor treatment must be used (although shortcuts are possible in special situations). Examples requiring such a treatment include gyroscopes, tops, and even satellites, all objects whose alignment can change.
The moment of inertia is also called the mass moment of inertia (especially by mechanical engineers) to avoid confusion with the second moment of area, which is sometimes called the area moment of inertia (especially by structural engineers). The easiest way to differentiate these quantities is through their units (kg·m² as opposed to m4). In addition, moment of inertia should not be confused with polar moment of inertia (more specifically, polar moment of inertia of area), which is a measure of an object's ability to resist torsion (twisting) only, although, mathematically, they are similar: if the solid for which the moment of inertia is being calculated has uniform thickness in the direction of the rotating axis, and also has uniform mass density, the difference between the two types of moments of inertia is a factor of mass per unit area.