Getting started in Precision Rifle Shooting. (Guide)


Aug 5, 2020
Farmington, NM
Wrong View attachment 7320163

RightView attachment 7320164


You must exercise breathing control during the aiming process. Breathing while trying to aim, with the natural up and down motion of the chest, will cause the rifle to move up and down. Up and down movement occurs while laying down. Breathing movement can be side to side when sitting at a bench rest type table when your body is against the table. You must therefore accomplish sight alignment while breathing and finish aiming in your natural respiratory pause. You do this by inhaling, exhaling, and stop at the moment of natural respiratory pause before beginning to inhale again.

A respiratory cycle lasts four to five seconds. Inhalation and exhalation take only about two seconds, thus between each respiratory cycle there is a pause of two to three seconds. This pause can be extended a couple seconds without any special effort or unpleasant sensations. Vertical strings on your target may be a indication that your holding your breathe. You should fire during this pause when your breathing muscles are relaxed. This avoids strain on the diaphragm.

You should assume your firing position and breathe naturally until your hold begins to settle.

The respiratory pause should never feel un-natural. If it is too long, the body suffers from oxygen deprivation and begins to send out signals to resume breathing. These signals produce involuntary movements of the diaphragm which interfere with the shooters concentration and lack of movement needed to make a shot. Always break your shot at your natural respiratory pause.

View attachment 7320165

Trigger Control

Trigger control is the most important fundamental of sniper marksmanship. It is defined as causing the rifle to fire when the sight picture is at its very best, without causing the rifle to move. Trigger squeeze on the other hand is defined as the independent action of the forefinger on the trigger with a uniformly increasing pressure on the trigger straight to the rear until the rifle fires. Trigger control is the last task to be accomplished before the rifle fires.

Proper trigger control occurs when the shooter places his firing finger as low on the trigger as possible and still clears the trigger guard, thereby achieving maximum mechanical advantage. He engages the trigger with that part of his firing finger (middle of the pad of the last digit) that allows him to pull the trigger straight to the rear. In order to avoid transferring movement of the finger to the entire rifle, the shooter should see daylight between the trigger finger and the stock as he squeezes the trigger straight to the rear. He fires the weapon when the reticle is in a position to insure a properly placed shot, or when the reticle is on target.

As the stability of a firing position decreases, the wobble area increases. The larger the wobble area, the harder it is to fire the shot without reacting to it, attempting to influence the sight placement when the trigger breaks. This reaction occurs when the shooter:

1. Anticipates recoil. The firing shoulder begins to move forward just before the rifle fires, thus pushing the rifle out of line with the target.

2. Jerks the Trigger. The trigger finger moves the trigger in a quick, choppy, spasmodic attempt to fire the shot before the reticle can move from the desired point of aim.

3. Flinches. The shooter's entire body (or parts thereof) overreacts to the anticipated noise or recoil (jerks). This is usually due to unfamiliarity with the weapon.

4. Avoids Recoil. The shooter tries to avoid recoil or noise by moving away from the weapon or by closing the firing eye just before the weapon fires. This again is caused by unfamiliarity with the weapon and a lack of knowledge of the weapon's actions upon firing.

Trigger control is best handled by assuming a stable position, adjusting on the target, and beginning a breathing cycle. As the shooter exhales the final breath approaching the natural respiratory pause, he secures his finger on the trigger. As the reticle settles on the target at the desired point of aim, and the natural respiratory pause is entered, the shooter applies initial pressure to the trigger. He increases the tension on the trigger during the respiratory pause as long as the reticle remains on the desired point of aim to insure a properly placed shot. If the reticle moves away from the desired point of aim, and the respiratory pause is free of strain or tension, the shooter stops increasing the tension on the trigger, waits for the reticle to return to the desired point of aim, and then continues to squeeze the trigger. This is trigger control. If movement is too large for recovery, or if the respiratory pause has become uncomfortable (extended too long), then the shooter should whenever possible, release the pressure off the trigger and start the respiratory cycle again.

The trigger finger should be indexed at 90 degrees. For right handed shooters the finger nail should point to 9 O’clock for devil lefties 3 O’clock.

Follow Through

Applying the fundamentals increases the odds of a well aimed shot being fired. There are however, additional skills, that when mastered, make the first round correct hit even more of a certainty. One of these skills is follow through.

a. This is the act of continuing to apply all the shooter marksmanship fundamentals as the weapon fires as well as after the weapon fires. Follow through consists of:

* Keeping the head in firm contact with the stock (stock weld) upon firing and after firing.

* Keeping the finger on the trigger pulling all the way to the rear when and after the weapon fires.

* Continuing to look through the scope when and after the weapon fires.

* Insuring the muscles stay relaxed when and after the weapon fires.

* Avoid reacting to the recoil or noise during and after firing.

* Releasing the trigger only after the recoil has stopped.

* Coming off the trigger or rifle will cause a drastic deviation in accuracy down range.

* Supportive hand stays in place.

b. Good follow through insures that the weapon is allowed to fire and recoil naturally, and the shooter/rifle combination reacts as a single unit to such actions.

Calling the Shot

Calling the shot is being able to tell where the bullet should impact on the target. The shooter must be able to accurately call the shots. Proper follow through will aid in calling the shot. The dominant factor in calling the shot is, where ever the reticle is when the shot is fired. This location is called the final focus point.

Body Position

The spinal cord should be straight behind the rear of the rifle. Days when you laid offset or canted behind the rifle are over. One of the big reasons behind this is to negate recoil, spot your own impacts downrange, and become more solid behind the rifle. Legs should be spread wide into a “V” with your heels flat on the ground with toes turned outward. Spreading your legs creates a larger surface contact with the ground creating a more stabile platform. Heels flat keeps adds in our stability as well, using your toes will cause you to wobble and drift your body position because you’re subconsciously trying to balance the weight of your legs with your toes.
good stuff here


Aug 5, 2020
Farmington, NM
Battery Free Ballistics and Rangefinder

FDAC (Field Density Altitude Compensator)

View attachment 7320199
Designed for use with all MOA and MRAD adjusting optics. This product was entirely conceived, designed, and validated by Adaptive Consulting & Training Services, LLC (ACTS). ACTS is a small business completely owned and operated by former USMC Scout Snipers.

The FDAC is an analog slide rule that displays elevation and windage firing solutions using density altitude (DA). It has two sides, side (A) calculates firing solutions in MOA (minutes of angle) and side (B) calculates in 0.1 MRAD (one tenth milradian, commonly referred to as “mils”). The front of the product has a density altitude calculation table, allowing the user to easily compute density altitude with acceptable accuracy in the absence of an instrument such as a kestrel or other device that measures density altitude. The user simply inserts the slide which is the closest to the muzzle velocity of his rifle, and then slides the internal firing solution matrix (the slide) until the current density altitude and the below listed firing solutions are visible in the viewing window. All firing solutions contained in the FDAC are calculated using the G7 drag model and Bryan Litz’s tested G7 ballistic coefficients. All data contained in the three slides are the results of an extensive two year live fire testing and validation project involving several military snipers, about 20 different weapon/optic.

Adaptive Quick Card (AQC)

View attachment 7320200
The AQC is designed to be the most simple, intuitive, and accurate tool available to estimate density altitude (DA) and calculate long range firing solutions for a large array of popular firearm calibers, bullet types, and muzzle velocities.

The AQC's design is an adaptation from the FDAC (Field Density Altitude Compensator) and was completely conceived, designed, and validated by a team of Marine Scout Snipers. The AQC is intended to simplify the process of calculating a firing solution, so that all users of all experience levels can quickly and easily engage targets in austere field environments, without the use of any additional devices.

The firing solutions found within the AQC are incredibly accurate and have been extensively tested at long range to ensure data accuracy and compatibility with the wide range of firearm and optics combinations used by today's military/LE snipers and long range shooting enthusiasts.

Mildot Master

View attachment 7320201

The Mildot Master in use is fairly simple. You measure a target of known height with the Mil scale in your rifle scope. You then match the target height on the sliding scale of the Mildot Master to the milled height on the body. You then look at the arrow on the scale labeled "TARGET RANGE" and bingo! Check your ballistic table, dial in the correction and fire. No more need to remember the Mil Relation formula or worry about your calculator breaking in the field.

The Mildot Master accommodates meters instead of yards by just turning the sliding scale over. There is even a place on the back to place your ballistic table.

One last cool feature that the Mildot Master has is a scale for reading the angle to target. If you have ever shot from high angles, then you know that this will cause your bullet to impact higher than it would at the same range over a flat line of sight. There is some trigonometry involved in working out the exact "corrected" range to the target. At short distances, it really doesn’t make a difference, but at long range and high angles it does. When dealing with extreme angles, the distance to the target is typically close due to terrain. Remember to use the elevation setting for corrected distance to target (along Earth’s surface), and the windage setting setting for straight line distance to target (measured distance).

On the back of the Mildot Master, there is an angle scale. You tie a piece of string and a small fishing weight (or rock, or whatever) to the rivet labled "PIVOT". Simply sight down the side edge of the Mildot Master to your target and read the angle off of the scale. Then flip the Mildot Master over and match the angle to the scale under "TARGET RANGE". That angle will correspond to the "corrected" angle on the scale. Dial in the scope correction required for the corrected range and engage.

Alternately, you can have your spotter measure the angle of the rifle barrel while you sight in on target.

The included instruction booklet goes into great detail on how to use the Mildot Master. It even includes practice problems.

While this may not be something that everyone needs, it is definitly worth the price. If you are a Military Sniper or a LE Sniper who may have to shoot over extended ranges this is a "must have" backup to your Laser

Torque Values

Most bolts and fasteners on a rifle have a recommended torque value. Pay close attention to the units when using a torque wrench. Foot-pounds (ft-lbs) and inch-pounds (in-lbs) differ by a factor of 12. Most people will have a foot-pounds torque wrench, but few people have an inch-pounds torque wrench. Most torque specs on a rifle are in inch-pounds. Here are a few recommended torque values.

Action screws into a chassis, fiberglass stock with pillar/action bedding and/or a bedding block: 50-65 in-lbs

Action screws into an un-bedded fiberglass stock or a stock with aluminum pillars: 40-50 in-lbs

Action screws into a wooden stock: 35-40 in-lbs

Scope base screws: 15-30 in-lbs

Scope ring cross bolt/nut: 50-65 in-lbs

Scope ring cap screws: 15-25 in-lbs

Barrel into action: typically 100 ft-lbs, but custom rifles will vary.

Note: These are typical values commonly found on most of these products. When you purchase a new piece of equipment, the manufacturer will include a torque value or they will list the information on their website.

When installing any of these components, you must take into account recoil. Most scope rails are equipped with some sort of recoil lug that hangs down into the ejection port of the action. When installing a scope rail, make sure the rail is pushed firmly forward. Scope ring lower halves must also be pushed forward against the lugs of a picatinny rail. It also helps to hold the ring half firm against one side as you tighten the bolt/nut. Scope ring caps should be installed using a ‘star’ pattern such as tightening lug nuts on a vehicle’s wheel. One difference is, when installing the barreled action into the stock, make sure the recoil lug is firmly against bedding or stock material before you torque those screws. It helps to get the screws started and stand the rifle up onto its recoil pad for final torque.

Scope Mounting

Some people think there is some voodoo involved with leveling a scope in the rings. From plumb bobs to a set of 3 levels, we’ve seen them all. The easiest and most accurate way is to use a set of feeler gauges. You can place these feeler gauges in between the scope’s erector housing and scope rail. Add or remove the amount of feeler gauges to take up the space between the two. Tighten the scope caps with the feeler gauges under the scope. This guarantees the scope is level in the rings and is level to the base which should be level to the action.

Cleaning and Maintenance

Fouled, warm bores are predictable. Fouled, cold bores as slightly less predictable. Clean, cold bores are even tougher to predict. Very seldom will you ever witness a long range shooter take an important shot on a target with a clean, cold bore. They want to have a layer of fouling in their bore to insure the shot they are about to take is as consistent as the shots they have taken previously.

You want to manage the fouling in your bores by routine cleaning. You do not want to clean a barrel squeaky clean. When you clean down to bare metal, you are removing all traces of copper and carbon that ‘smooth’ the bullet as it travels down the bore. This is especially true with factory barrels, and not so much as with hand lapped custom barrels. When you remove this fouling completely, you will have to deposit it back by shooting to regain the consistency. By removing most of the fouling, you will regain consistency is few to zero shots.

We seldom clean our bores. By seldom we mean, every couple hundred rounds or when accuracy falls off. The reason is because you can damage a barrel more by cleaning it than shooting it. Why would we unnecessarily clean of bore if it doesn’t need it? It only creates a risk of damaging your bore. With that said, we typically follow a set procedure to manage the fouling in our bores. Every 250 rounds, we will clean the carbon out of the bore while leaving the copper. This ensures we will retain our zero sooner while keeping the bore somewhat clean. Your rifle will be different. Pay attention to accuracy. If accuracy drops off for no apparent reason with a couple hundred rounds down the tube, a cleaning may be the trick.

Bore Guides

A bore guide is absolutely critical when cleaning a precision rifle. It ensures that the cleaning rod is held in the center of the bore while providing some additional stiffness to the rod by adding another point of support. It protects the chamber by usually sealing it off with O-rings. It protects the action and stock finish by shielding them from cleaning solutions. They are relatively in-expensive considering the insurance they provide. One of the best bore guides is the Lucas Bore Guide. It is a custom made bore guide to your cartridge, action and cleaning rod. It offers very good protection of the action, and precise alignment with its two-piece design. They can be purchased for about $60.

Cleaning Rods

A cleaning rod is also critical for cleaning. Gone are the days of the jointed cleaning rod. The segments can easily be off center allowing an offset of the rod pieces. This creates an ideal method to shave and scrape your barrel. Stick with solid one-piece rods. Dewey and Tipton stainless steel and carbon fiber rods are highly recommended. They offer the right amount of stiffness with ball bearings in the handle to glide along with the rifling. They come in various lengths and diameters. Just be certain to select one long enough when using a long barrel and a bore guide.

Cleaning Solutions

There are tons of bore cleaning products on the market. Most will do a good job. Some will do a great job. We like to use KG Products. They are ammonia-free and can be used to target carbon and copper separately. Please use caution when using any product with ammonia. Do not let ammonia based products stay in a bore for very long at all. It will etch the barrels and result in a great increase in fouling.

Patches and Jags

Have you ever seen someone clean their teeth with a stainless, copper or bronze brush? Then, why would you use it on your barrel. Stainless, copper and bronze brushes shouldn’t be used on precision rifles. Instead, use a nylon brush if you must. Stick to jags and patches with cleaners. Let the chemicals do the work. Never run a nylon brush or jag with a patch back and forth in the bore. Always push the rod to the muzzle in the travel of the bullet. Pay close attention to the crown. I never pull a jag or brush back through the bore. I will remove the jag and slide the rod back.

Chambers and Actions

We like to keep our chambers and actions relatively clean. Few good things can come from a filthy chamber and action…jams, pressure spikes, you name it. After a few shooting sessions, we will run a clean, dry cotton mop into the chamber and spin it by hand. This will remove any loose carbon or debris in the chamber. A quick wipe down of the bolt and action with a clean, dry rag is in order also. From time to time, we will swab out the lug recess in the action, but this requires a small tool to hold the swabs. Be sure to apply a thin layer of grease back onto the bolt lugs. You want just a dab, not enough to think it even does anything. This helps with galling of the lugs. Pull the bolt apart every so often to make sure all inner workings are clean of debris and are lubed. Use caution here, grease on the firing pin can draw condensation over time. Take the rifle hunting in the cold, and you may have a firing pin frozen in place. We like to use a light dusting of dry lube on the firing pin itself.

Data Books

View attachment 7320202
A data book is a book that holds a wealth of information about you and your rifle. From serial numbers to scope settings for a specific stage in a competition, a data book can keep it all organized. They are most helpful in storing ballistics for your rifle or DOPE, Data On Previous Engagement. You can log each of your shots in different conditions and refer back to them when in similar conditions. Multiple companies make them with multiple layouts. We recommend Impact Data Books. It is owned and operated by a former Scout Sniper and current competition shooter. He allows you to organize your data book to your specific needs. From target shapes to range cards, he makes all the sheets to track your shots in training and competition. He also uses a set of reference pages of useful info. One important piece of advice: garbage in = garbage out. Your data book is only as useful as the information you enter into it.


8541 Tactical (

Shooting Voodoo (

Sniper’s Hide ( Online training/ DVDs

Impact Data Books (

Mil-Dot (


JBM Ballistics (
good information. THank you for posting it.